Theorem 1 (Existence of Monotime Subseq). Let
$$\binom{n}{m}$$

be any sequence (of real number). Then it has a
monotone subsequence.
pf. We call a natural number a peak-index
(a_m is then called a peak-tive) for the seq $\binom{n}{i}$ if
($\#$) $a_m \ge a_{m+j} \ \forall \ j \in \mathcal{N} \cdot \binom{n}{m} \frac{\pi}{m} \frac$

Repeating the same to
$$n_2$$
 for m we get some
 $n_3 > n_2$ s.t. $G_{n_2} < G_{n_3}$. Industriely me have
 a strictly increasing req. $(m_k)_{k \in W}$
 n which numbers s.t.
 $G_{n_k} < G_{n_{k+1}} \neq \kappa \in M$
so (G_{n_k}) is a (strictly) moreasing subseq
of (G_n) .
 $Case 2$. There are infinitized many perk-indices, so
we have
 $n_1 < n_2 < n_3 < \dots$
with each of them being a peak-index. By
 $dyintin g peak, one they have
 $G_{n_k} > G_{n_2} > G_{n_3} > \dots$
so (G_{n_k}) is a decreasing subseq of (G_n) .
The (M_{n_k}) is a decreasing subseq of (G_n) .
The (M_{n_k}) has a convergent subseq.$

Pf. by ThI, I a monotone subseq, (XnK) of (Xn). Since (XnK) 15 also bounded (with low bound a & uppu bound b), it must be convergent by MCT. Note. lim Xnik E [a,b] (by the order-preserving property for limits). Thus The comalternatively be stated as follows: Th2' (Bolgano-WeierstrassTh) Let (Xn) be a sequence in a bounded closed intrival [a,b]. Then] a convergent mbseg/ (In K) such that $\lim_{k} X_{n_k} \in [a, b].$ Note. The B-W theorem can be alternatively proved by Nested Interval Th. (d"Bisection Technique) Th3 (Campy Criterion). Sequence (Xn) converges iff it is Campy. Proof. We show the sufficient part (as the Nece. Part alrendy note a).

Let (In) be Camp. In particular,]
No E M s.r.

$$|Im - In| < 1 \quad \forall m, n \ge No.$$
Let $M := \max\{IX_{No}| + I, |X_{1}I, \dots, |X_{No}|\}$
Then, as before, $|In| \le M \forall n, hat n$
(In) 16 bounded, and hence it has a
convergence subseq $(In_{K}) :$
 $X := lim In_{K}$.
We show, with the aid of Caruly propuls, that
 $I = lim In$
To do this, but 500. Take NE M s.t.
 $|I_{K} - I_{K}| < \frac{1}{2} \forall m, n \ge N,$
and also $\exists |K \in M s.t.$
 $I = I_{K} + K \le N.$
Take a natural number $k \ge N, K$ (So
also $n_{K} \ge k \ge N$). Note then that, for the k,
 $|I_{N_{K}} - X| < \frac{1}{2} \forall n \ge N$

and it follows from the
$$\Delta$$
-inequality that
 $|\chi_n - \pi| < \varepsilon + n > N$.
i.e. $\lim_{n \to \infty} \chi_n = \chi$.